Box modeling in support of SEAC⁴RS: variations in the dependence of CH₂O on isoprene, MVK+MACR and NO_x

Jennifer Olson, Alan Fried, Jim Crawford, Gao Chen, +SEAC4RS science team

A look at SE US Isoprene chemistry...

CH₂O BUDGET FOR <2 km SE U.S. (shown as function of MVK+MAC):

CH₂O Budget calculated using an assumed steady state source allocation method. All sources traced back to: CH₄, Isoprene, Alcohols, Ketones, NMHCs, Mixed source. Additional sources are assigned to the following categories (Acetic Acid, CH₃OOH, MCO₃/PAN, Acetaldehyde) if the model was constrained to observation (i.e., if transported precursors impact formation). If model-calculated, then these sources are reassigned according to their own source allocations:

d according to their own source allocations: CH₂O Calc/Obs ratio as function of % source

 CH_2O predictions within 10% for NO_x > 100 ppt. CH_2O underpredicted at lower NO_x . Underpredictions correlate with decline in percentage contribution from isoprene. Background photochemical source of CH_2O slightly underpredicted??

CH₂O/MVK+MACR relationship as a function of NO_x: Observed and Diagnosed (Observations in colors, Model calculations in black)

as announced at science team meeting)

Slopes indicate NET production of CH₂O per molecule of MVK+MACR of

relationship for the

longer-lived

MVK+MACR

- molecule of MVK+MACR of ~2 for higher NO_x (>400 ppt) *~4 calculated*
- ~.7 for lower NO_x.
 ~.7-1.1 calculated

For isoprene (plots not shown), slopes indicate
NET production of CH₂O per molecule of isoprene of
2.6 for high NO_x (>400 pptv)

5 calculated
.4-.6 for lower NO_x

.7-1.4 calculated

Selected other comparisons Calc ISPN < 2km

NASA Langley Time-dependent, observationally constrained photochemical box model

Diurnal steady state approach using a detailed HO_x-NO_x-CH₄-NMHC mechanism

(model is integrated to find converging diurnal profiles of predicted species converge to within a given tolerance)
Reactions and rates are taken from recommendations in JPL (2011) and IUPAC (2006)

Diurnal variation of clear-sky photolysis rates is calculated using TUV (DISORT 8 streams) (Madronich and Flocke, 1998) Clear-sky photolysis rates are then normalized to give observed value of photolysis rate at time of measurement.

ISOPRENE mechanism: Updated based on MIM2 (Taraborelli et al., 2009),

and isoprene nitrate/peroxide/epoxide chemistry from *Paulot et al. 2009a* and *2009b*Isomerization of isoprene peroxy radicals (*Crounse et al. 2011*) are estimated as in GEOS-Chem chemical mechanism

For base calculations, model is run FULLY CONSTRAINED, using observations of location, physical parameters, And the standard constraints for NO, O_3 , CO, H_2O , photolysis, NMHCs, and Methanol.

ADDITIONAL CONSTRAINTS are included for MVK+MACR, PAN, HNO₃. (Note, Isoprene is included in order to properly diagnose OH concentrations and additional isoprene oxidation products, but MVK+MACR is held to observations.) During computation, Isoprene set to zero at night, and constraint of MVK+MACR to observations is removed at night.

Ethanol assumed to = 3% Methanol (median from INTEX-NA)

Calculated radicals include OH, HO₂, RO₂, Glyoxal, Methylglyoxal, etc...

Calculated radicals for comparison to observations include: CH₂O, HNO₄, CH3OOH, ISOPOOH, ISOPN, Glycolaldehyde, Hydroxyacetone, etc...

Data used here are from the DC8 Preliminary RN version of the merge (April 3)

Full SEAC4RS data set:

Generally good representation of CH_2O but slightly underpredicted. Median Calc/Obs for CH_2O -CAMS=0.88 (.99 when MVK+MAC > 100 ppt, n=2325) Median Calc/Obs for CH_2O -LIF=0.70 (.98 when MVK+MAC > 100 ppt, n=2369)

In boundary layer, CH₂O source strength is a median of ~1 ppb/hour

Good representation of MVK+MAC **(this is prior to corrections to

MVK+MACR as announced at science team meeting)

Overpredictions for PAN, HNO₃

